Estratificación Coronaria. Valoración de los Métodos de Imagen y Funcionales en la Evaluación de los Pacientes con Angina
Resumen
Se proporciona una revisión exhaustiva y actualizada sobre la estratificación coronaria, enfocándose en la valoración de métodos de imagen y funcionales para evaluar pacientes con angina. Presenta un enfoque multidisciplinario, con contribuciones de varios especialistas en el campo de la medicina cardiovascular, reflejando un análisis profundo sobre la enfermedad arterial coronaria (EAC), su diagnóstico, pronóstico, y tratamiento. La revisión destaca la importancia de la angiografía coronaria invasiva como el estándar de oro para la evaluación luminal de las arterias coronarias, mientras discute el papel pronóstico y terapéutico de identificar lesiones EAC significativas tanto anatómicas como funcionales. Además, se analizan avances en técnicas de imagen no invasivas, como la ecocardiografía de estrés, tomografía computarizada por emisión de fotón único (SPECT), y la resonancia magnética cardíaca (IRM), ofreciendo perspectivas sobre su eficacia en la detección de isquemia y en la evaluación de la viabilidad miocárdica.
Descargas
Citas
Sakakura K., Nakano M., Otsuka F., Ladich E., Kolodgie F.D., Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22:399–411. doi: 10.1016/j.hlc.2013.03.001. (PubMed) (CrossRef) (Google Scholar)
Tan C., Schatz R.A. The History of Coronary Stenting. Interv. Cardiol. Clin. 2016;5:271–280. doi: 10.1016/j.iccl.2016.03.001. (PubMed) (CrossRef) (Google Scholar)
Chan K.H., Ng M.K. Is there a role for coronary angiography in the early detection of the vulnerable plaque? Int. J. Cardiol. 2013;164:262–266. doi: 10.1016/j.ijcard.2012.01.027. (PubMed) (CrossRef) (Google Scholar)
Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425. (PubMed) (CrossRef) (Google Scholar)
Spacek M., Zemanek D., Hutyra M., Sluka M., Taborsky M. Vulnerable atherosclerotic plaque—A review of current concepts and advanced imaging. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2018;162:10–17. doi: 10.5507/bp.2018.004. (PubMed) (CrossRef) (Google Scholar)
Stefanadis C., Antoniou C.K., Tsiachris D., Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J. Am. Heart Assoc. 2017;6:3. doi: 10.1161/JAHA.117.005543. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Mundi S., Massaro M., Scoditti E., Carluccio M.A., van Hinsbergh V.W.M., Iruela-Arispe M.L., De Caterina R. Endothelial permeability, LDL deposition, and cardiovascular risk factors—A review. Cardiovasc. Res. 2018;114:35–52. doi: 10.1093/cvr/cvx226. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Theofilis P., Sagris M., Antonopoulos A.S., Oikonomou E., Tsioufis K., Tousoulis D. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography. 2022;8:1742–1758. doi: 10.3390/tomography8040147. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Badimon L., Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014;276:618–632. doi: 10.1111/joim.12296. (PubMed)
Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92:1355–1374. doi: 10.1161/01.CIR.92.5.1355. (PubMed) (CrossRef) (Google Scholar)
Michel J.B., Virmani R., Arbustini E., Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 2011;32:1977–1985. doi: 10.1093/eurheartj/ehr054. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Falk E., Nakano M., Bentzon J.F., Finn A.V., Virmani R. Update on acute coronary syndromes: The pathologists’ view. Eur. Heart J. 2013;34:719–728. doi: 10.1093/eurheartj/ehs411. (PubMed) (CrossRef) (Google Scholar)
Newby A.C. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul. Pharmacol. 2012;56:232–244. doi: 10.1016/j.vph.2012.01.007. (PubMed) (CrossRef) (Google Scholar)
Linton M.F., Babaev V.R., Huang J., Linton E.F., Tao H., Yancey P.G. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis. Circ. J. 2016;80:2259–2268. doi: 10.1253/circj.CJ-16-0924. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Wang L., Li H., Tang Y., Yao P. Potential Mechanisms and Effects of Efferocytosis in Atherosclerosis. Front. Endocrinol. 2020;11:585285. doi: 10.3389/fendo.2020.585285. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Sluimer J.C., Kolodgie F.D., Bijnens A.P., Maxfield K., Pacheco E., et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J. Am. Coll. Cardiol. 2009;53:1517–1527. doi: 10.1016/j.jacc.2008.12.056. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Falk E., Shah P.K., Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–671. doi: 10.1161/01.CIR.92.3.657. (PubMed) (CrossRef) (Google Scholar)
Chan K.H., Chawantanpipat C., Gattorna T., Chantadansuwan T., Kirby A., Madden A., Keech A., Ng M.K. The relationship between coronary stenosis severity and compression type coronary artery movement in acute myocardial infarction. Am. Heart J. 2010;159:584–592. doi: 10.1016/j.ahj.2009.12.036. (PubMed)
Libby P., Pasterkamp G. Requiem for the ‘vulnerable plaque’ Eur. Heart J. 2015;36:2984–2987. doi: 10.1093/eurheartj/ehv349. (PubMed)
Stone G.W., Maehara A., Lansky A.J., de Bruyne B., Cristea E., et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011;364:226–235. doi: 10.1056/NEJMoa1002358. (PubMed) (CrossRef) (Google Scholar)
Iwarson S. Do we have antibiotic drug abuse? Lakartidningen. 1978;75:1382. (PubMed) (Google Scholar)
Xaplanteris P., Fournier S., Pijls N.H.J., Fearon W.F., Barbato E., et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. N. Engl. J. Med. 2018;379:250–259. doi: 10.1056/NEJMoa1803538. (PubMed) (CrossRef) (Google Scholar)
Xu Y., Mintz G.S., Tam A., McPherson J.A., Iniguez A., et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: A 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT) Circulation. 2012;126:537–545. (PubMed) (Google Scholar)
Collet J.P., Thiele H., Barbato E., Barthelemy O., Bauersachs J., et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42:1289–1367. doi: 10.1093/eurheartj/ehaa575. (PubMed) (CrossRef) (Google Scholar)
Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur. Heart J. 2018;39:119–177. (PubMed) (Google Scholar)
Liu L., Abdu F.A., Yin G., Xu B., Mohammed A.Q.,et al. Prognostic value of myocardial perfusion imaging with D-SPECT camera in patients with ischemia and no obstructive coronary artery disease (INOCA) J. Nucl. Cardiol. 2021;28:3025–3037. doi: 10.1007/s12350-020-02252-8. (PubMed) (CrossRef) (Google Scholar)
Doukky R., Hayes K., Frogge N., Balakrishnan G., Dontaraju V.S., et al. Impact of appropriate use on the prognostic value of single-photon emission computed tomography myocardial perfusion imaging. Circulation. 2013;128:1634–1643. doi: 10.1161/CIRCULATIONAHA.113.002744. (PubMed) (CrossRef) (Google Scholar)
Senior R., Monaghan M., Becher H., Mayet J., Nihoyannopoulos P. Stress echocardiography for the diagnosis and risk stratification of patients with suspected or known coronary artery disease: A critical appraisal. Supported by the British Society of Echocardiography. Heart. 2005;91:427–436. doi: 10.1136/hrt.2004.044396. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Al-Lamee R., Thompson D., Dehbi H.M., Sen S., Tang K., Davies J., Keeble T., Mielewczik M., Kaprielian R., Malik I.S., et al. Percutaneous coronary intervention in stable angina (ORBITA): A double-blind, randomised controlled trial. Lancet. 2018;391:31–40. doi: 10.1016/S0140-6736(17)32714-9. (PubMed) (CrossRef) (Google Scholar)
Acosta Santos , M. (2022). Investigación sobre la efectividad del ejercicio en la mejora de la calidad de sueño en adultos mayores. Revista Científica De Salud Y Desarrollo Humano, 3(2), 64-79. https://doi.org/10.61368/r.s.d.h.v3i2.35
ANE. National Spectrum Agency. Resolution Number 442 of 22 August 2013. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_0963_2019.htm
Maron D.J., Hochman J.S., Reynolds H.R., Bangalore S., O’Brien S.M., et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. N. Engl. J. Med. 2020;382:1395–1407. doi: 10.1056/NEJMoa1915922. (PMC free article) (PubMed).
Bech G.J., De Bruyne B., Pijls N.H., de Muinck E.D., Hoorntje J.C., et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. Circulation. 2001;103:2928–2934. doi: 10.1161/01.CIR.103.24.2928. (PubMed) (CrossRef) (Google Scholar)
Zimmermann F.M., Ferrara A., Johnson N.P., van Nunen L.X., Escaned J., et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur. Heart J. 2015;36:3182–3188. doi: 10.1093/eurheartj/ehv452. (PubMed).
Tonino P.A., De Bruyne B., Pijls N.H., Siebert U., Ikeno F., et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009;360:213–224. doi: 10.1056/NEJMoa0807611. (PubMed).
De Bruyne B., Pijls N.H., Kalesan B., Barbato E., Tonino P.A., et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 2012;367:991–1001. doi: 10.1056/NEJMoa1205361. (PubMed).
Avanzas P., Arroyo-Espliguero R., Garcia-Moll X., Kaski J.C. Inflammatory biomarkers of coronary atheromatous plaque vulnerability. Panminerva Med. 2005;47:81–91. (PubMed) (Google Scholar)
Zakynthinos E., Pappa N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 2009;53:317–333. doi: 10.1016/j.jjcc.2008.12.007. (PubMed).
Li H., Sun K., Zhao R., Hu J., Hao Z., Wang F., Lu Y., Liu F., Zhang Y. Inflammatory biomarkers of coronary heart disease. Front. Biosci. 2017;22:504–515.
Oikonomou E., Tsaplaris P., Anastasiou A., Xenou M., Lampsas S., Siasos G., Pantelidis P., Theofilis P., Tsatsaragkou A., Katsarou O., et al. Interleukin-1 in Coronary Artery Disease. Curr. Top. Med. Chem. 2022 doi: 10.2174/1568026623666221017144734. (PubMed) (CrossRef) (Google Scholar)
Chan D., Ng L.L. Biomarkers in acute myocardial infarction. BMC Med. 2010;8:34. doi: 10.1186/1741-7015-8-34. (PMC free article) (PubMed).
Aldous S.J. Cardiac biomarkers in acute myocardial infarction. Int. J. Cardiol. 2013;164:282–294. doi: 10.1016/j.ijcard.2012.01.081. (PubMed).
Lubrano V., Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World J. Exp. Med. 2015;5:21–32. doi: 10.5493/wjem.v5.i1.21. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Kinlay S., Egido J. Inflammatory biomarkers in stable atherosclerosis. Am. J. Cardiol. 2006;98:2P–8P. doi: 10.1016/j.amjcard.2006.09.014. (PubMed).
Machuca-Sepúlveda, J., López M., M., & Vargas L., E. (2021). Equilibrio ambiental precario en humedales áridos de altura en Chile. Emergentes - Revista Científica, 1(1), 33-57. Recuperado a partir de https://revistaemergentes.org/index.php/cts/article/view/3
Fichtlscherer S., Heeschen C., Zeiher A.M. Inflammatory markers and coronary artery disease. Curr. Opin. Pharmacol. 2004;4:124–131. doi: 10.1016/j.coph.2004.01.002. (PubMed) (CrossRef) (Google Scholar)
Lampsas S., Tsaplaris P., Pantelidis P., Oikonomou E., Marinos G., et al. The Role of Endothelial Related Circulating Biomarkers in COVID-19. A Systematic Review and Meta-analysis. Curr. Med. Chem. 2022;29:3790–3805. doi: 10.2174/0929867328666211026124033. (PubMed) (CrossRef) (Google Scholar)
Ikonomidis I., Michalakeas C.A., Parissis J., Paraskevaidis I., Ntai K., Papadakis I., Anastasiou-Nana M., Lekakis J. Inflammatory markers in coronary artery disease. Biofactors. 2012;38:320–328. doi: 10.1002/biof.1024. (PubMed) (CrossRef).
Theofilis P., Oikonomou E., Vogiatzi G., Sagris M., Antonopoulos A.S., et al. The role of microRNA-126 in atherosclerotic cardiovascular diseases. Curr. Med. Chem. 2022 doi: 10.2174/0929867329666220830100530. (PubMed) (CrossRef) (Google Scholar)
Theofilis P., Vogiatzi G., Oikonomou E., Gazouli M., Siasos G., et al. The Effect of MicroRNA-126 Mimic Administration on Vascular Perfusion Recovery in an Animal Model of Hind Limb Ischemia. Front. Mol. Biosci. 2021;8:724465. doi: 10.3389/fmolb.2021.724465. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Theofilis P., Oikonomou E., Vogiatzi G., Antonopoulos A.S., Siasos G., et al. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and meta-analysis of animal studies. Vascul. Pharmacol. 2021;141:106906. doi: 10.1016/j.vph.2021.106906. (PubMed).
Economou E.K., Oikonomou E., Siasos G., Papageorgiou N., Tsalamandris S., Mourouzis K., Papaioanou S., Tousoulis D. The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis. 2015;241:624–633. doi: 10.1016/j.atherosclerosis.2015.06.037. (PubMed).
Zakynthinos G., Siasos G., Oikonomou E., Gazouli M., Mourouzis K., et al. Exploration analysis of microRNAs -146a, -19b, and -21 in patients with acute coronary syndrome. Hellenic J. Cardiol. 2021;62:260–263. doi: 10.1016/j.hjc.2020.08.002.
Polina I.A., Ilatovskaya D.V., DeLeon-Pennell K.Y. Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clin. Chim. Acta. 2020;503:145–150. doi: 10.1016/j.cca.2020.01.013. (PMC free article) (PubMed).
Leta R., Carreras F., Alomar X., Monell J., Garcia-Picart J., Auge J.M., Salvador A., Pons-Llado G. Non-invasive coronary angiography with 16 multidetector-row spiral computed tomography: A comparative study with invasive coronary angiography. Rev. Esp. Cardiol. 2004;57:217–224. doi: 10.1016/S0300-8932(04)77093-1.
Hausleiter J., Meyer T., Hadamitzky M., Zankl M., Gerein P., et al. Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: The Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (PCACTUS) trial. Eur. Heart J. 2007;28:3034–3041. doi: 10.1093/eurheartj/ehm150. (PubMed)
Budoff M.J., Dowe D., Jollis J.G., Gitter M., Sutherland J., et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008;52:1724–1732. (PubMed)
Dewey M., Rief M., Martus P., Kendziora B., Feger S., et al. Evaluation of computed tomography in patients with atypical angina or chest pain clinically referred for invasive coronary angiography: Randomised controlled trial. BMJ. 2016;355:i5441. doi: 10.1136/bmj.i5441. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Song Y.B., Arbab-Zadeh A., Matheson M.B., Ostovaneh M.R., Vavere A.L., et al. Contemporary Discrepancies of Stenosis Assessment by Computed Tomography and Invasive Coronary Angiography. Circ. Cardiovasc. Imaging. 2019;12:e007720. doi: 10.1161/CIRCIMAGING.118.007720. (PubMed) (CrossRef) (Google Scholar)
Group D.T., Maurovich-Horvat P., Bosserdt M., Kofoed K.F., Rieckmann N., et al. CT or Invasive Coronary Angiography in Stable Chest Pain. N. Engl. J. Med. 2022;386:1591–1602. doi: 10.1056/NEJMoa2200963. (PubMed)
Griffin W.F., Choi A.D., Riess J.S., Marques H., Chang H.J.., et al. AI Evaluation of Stenosis on Coronary CT Angiography, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy. JACC Cardiovasc. Imaging. 2022 doi: 10.1016/j.jcmg.2021.10.020. (PubMed)
Daghem M., Newby D.E. Detecting unstable plaques in humans using cardiac CT: Can it guide treatments? Br. J. Pharmacol. 2021;178:2204–2217. doi: 10.1111/bph.14896. (PubMed) (CrossRef) (Google Scholar)
Budoff M.J., Young R., Burke G., JeRFFey Carr J., Detrano R.C., Folsom A.R., Kronmal R., Lima J.A.C., Liu K.J., McClelland R.L., et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: The multi-ethnic study of atherosclerosis (MESA) Eur. Heart J. 2018;39:2401–2408. doi: 10.1093/eurheartj/ehy217. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Boza Calvo , R., & Solano Mena , S. (2021). Effectiveness Analysis of The Implementation of The Strategy of Simulation in Education According to The Perception of The Facilitators Involved in The Process as Of the Second Quarter Of 2016. Sapiencia Revista Científica Y Académica , 1(1), 61-77. Recuperado a partir de https://revistasapiencia.org/index.php/Sapiencia/article/view/14
Sandesara P.B., Mehta A., O’Neal W.T., Kelli H.M., Sathiyakumar V., Martin S.S., Blaha M.J., Blumenthal R.S., Sperling L.S. Clinical significance of zero coronary artery calcium in individuals with LDL cholesterol >/=190mg/dL: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2020;292:224–229. doi: 10.1016/j.atherosclerosis.2019.09.014. (PubMed) (CrossRef) (Google Scholar)
Lehmann N., Erbel R., Mahabadi A.A., Rauwolf M., Mohlenkamp S., Moebus S., Kalsch H., Budde T., Schmermund A., Stang A., et al. Value of Progression of Coronary Artery Calcification for Risk Prediction of Coronary and Cardiovascular Events: Result of the HNR Study (Heinz Nixdorf Recall) Circulation. 2018;137:665–679. doi: 10.1161/CIRCULATIONAHA.116.027034. (PMC free article) (PubMed) (CrossRef)
Blaha M.J., Whelton S.P., Al RiIAGP M., Dardari Z., Shaw L.J., Al-Mallah M.H., Matsushita K., Rozanski A., Rumberger J.A., Berman D.S., et al. Comparing Risk Scores in the Prediction of Coronary and Cardiovascular Deaths: Coronary Artery Calcium Consortium. JACC Cardiovasc. Imaging. 2021;14:411–421. doi: 10.1016/j.jcmg.2019.12.010. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Patel K.K., Peri-Okonny P.A., Qarajeh R., Patel F.S., Sperry B.W., et al. Prognostic Relationship Between Coronary Artery Calcium Score, Perfusion Defects, and Myocardial Blood Flow Reserve in Patients With Suspected Coronary Artery Disease. Circ. Cardiovasc. Imaging. 2022;15:e012599. doi: 10.1161/CIRCIMAGING.121.012599. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Pundziute G., Schuijf J.D., Jukema J.W., Decramer I., Sarno G., et al. Evaluation of plaque characteristics in acute coronary syndromes: Non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur. Heart J. 2008;29:2373–2381. doi: 10.1093/eurheartj/ehn356. (PubMed) (CrossRef) (Google Scholar)
Kashiwagi M., Tanaka A., Kitabata H., Tsujioka H., Kataiwa H., Komukai K., Tanimoto T., Takemoto K., Takarada S., Kubo T., et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc. Imaging. 2009;2:1412–1419. doi: 10.1016/j.jcmg.2009.09.012. (PubMed)
Ito T., Terashima M., Kaneda H., Nasu K., Matsuo H., et al. Comparison of in vivo assessment of vulnerable plaque by 64-slice multislice computed tomography versus optical coherence tomography. Am. J. Cardiol. 2011;107:1270–1277. doi: 10.1016/j.amjcard.2010.12.036. (PubMed) (CrossRef) (Google Scholar)
Ito T., Nasu K., Terashima M., Ehara M., Kinoshita Y., et al. The impact of epicardial fat volume on coronary plaque vulnerability: Insight from optical coherence tomography analysis. Eur. Heart J. Cardiovasc. Imaging. 2012;13:408–415. doi: 10.1093/ehjci/jes022. (PubMed) (CrossRef) (Google Scholar)
Yuan M., Wu H., Li R., Yu L., Zhang J. Epicardial adipose tissue characteristics and CT high-risk plaque features: Correlation with coronary thin-cap fibroatheroma determined by intravascular ultrasound. Int. J. Cardiovasc. Imaging. 2020;36:2281–2289. doi: 10.1007/s10554-020-01917-2. (PubMed) (CrossRef) (Google Scholar)
Motoyama S., Kondo T., Sarai M., Sugiura A., Harigaya H., et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 2007;50:319–326. doi: 10.1016/j.jacc.2007.03.044. (PubMed) (CrossRef) (Google Scholar)
Antonopoulos A.S., Sanna F., Sabharwal N., Thomas S., Oikonomou E.K., et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017;9:eaal2658. doi: 10.1126/scitranslmed.aal2658. (PubMed) (CrossRef) (Google Scholar)
Oikonomou E.K., Marwan M., Desai M.Y., Mancio J., Alashi A., , et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet. 2018;392:929–939. doi: 10.1016/S0140-6736(18)31114-0. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Oikonomou E.K., Desai M.Y., Marwan M., Kotanidis C.P., Antonopoulos A.S., Schottlander D., Channon K.M., Neubauer S., Achenbach S., Antoniades C. Perivascular Fat Attenuation Index Stratifies Cardiac Risk Associated With High-Risk Plaques in the CRISP-CT Study. J. Am. Coll. Cardiol. 2020;76:755–757. doi: 10.1016/j.jacc.2020.05.078. (PubMed) (CrossRef) (Google Scholar)
Dai X., Yu L., Lu Z., Shen C., Tao X., Zhang J. Serial change of perivascular fat attenuation index after statin treatment: Insights from a coronary CT angiography follow-up study. Int. J. Cardiol. 2020;319:144–149. doi: 10.1016/j.ijcard.2020.06.008. (PubMed) (CrossRef) (Google Scholar)
Kitagawa K., Nakamura S., Ota H., Ogawa R., Shizuka T., Kubo T., Yi Y., Ito T., Nagasawa N., Omori T., et al. Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Dual-Source Computed Tomography. J. Am. Coll. Cardiol. 2021;78:1937–1949. doi: 10.1016/j.jacc.2021.08.067. (PubMed) (CrossRef) (Google Scholar)
de Knegt M.C., Rossi A., TEPersen S.E., Wragg A., Khurram R., et al. Stress myocardial perfusion with qualitative magnetic resonance and quantitative dynamic computed tomography: Comparison of diagnostic performance and incremental value over coronary computed tomography angiography. Eur. Heart J. Cardiovasc Imaging. 2020;22:1452–1462. doi: 10.1093/ehjci/jeaa270. (PubMed) (CrossRef)
Nous F.M.A., Geisler T., Kruk M.B.P., Alkadhi H., Kitagawa K., et al. Dynamic Myocardial Perfusion CT for the Detection of Hemodynamically Significant Coronary Artery Disease. JACC Cardiovasc. Imaging. 2022;15:75–87. doi: 10.1016/j.jcmg.2021.07.021. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Yu L., Lu Z., Dai X., Shen C., Zhang L., Zhang J. Prognostic value of CT-derived myocardial blood flow, CT fractional flow reserve and high-risk plaque features for predicting major adverse cardiac events. Cardiovasc. Diagn. Ther. 2021;11:956–966. doi: 10.21037/cdt-21-219. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Yu M., Shen C., Dai X., Lu Z., Wang Y., Lu B., Zhang J. Clinical Outcomes of Dynamic Computed Tomography Myocardial Perfusion Imaging Combined With Coronary Computed Tomography Angiography Versus Coronary Computed Tomography Angiography-Guided Strategy. Circ. Cardiovasc. Imaging. 2020;13:e009775. doi: 10.1161/CIRCIMAGING.119.009775. (PubMed) (CrossRef) (Google Scholar)
Yongguang G., Yibing S., Ping X., Jinyao Z., Yufei F., Yayong H., Yuanshun X., Gutao L. Diagnostic effiPCACy of ATC and CT-RFF based on risk factors for myocardial ischemia. J. Cardiothorac. Surg. 2022;17:39. doi: 10.1186/s13019-022-01787-w. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Chua A., Ihdayhid A.R., Linde J.J., Sorgaard M., Cameron J.D., et al. Diagnostic Performance of CT-Derived Fractional Flow Reserve in Australian Patients Referred for Invasive Coronary Angiography. Heart Lung Circ. 2022;31:1102–1109. doi: 10.1016/j.hlc.2022.03.008. (PubMed) (CrossRef) (Google Scholar)
Lanfear A.T., Meidan T.G., Aldrich A.I., Brant N., Squiers J.J., Shih E., Bhattal G., Banwait J.K., McCracken J., Kindsvater S., et al. Real-world validation of fractional flow reserve computed tomography in patients with stable angina: Results from the prospective AFFECTS trial. Clin. Imaging. 2022;91:32–36. doi: 10.1016/j.clinimag.2022.08.009. (PubMed) (CrossRef) (Google Scholar)
López Medina, P. A. (2022). La Protección de los Derechos de Autor en La Era Digital. Estudios Y Perspectivas Revista Científica Y Académica , 2(1), 96-112. https://doi.org/10.61384/r.c.a.v2i1.11
Mickley H., Veien K.T., Gerke O., Lambrechtsen J., Rohold A., Steffensen F.H., Husic M., Akkan D., Busk M., Jessen L.B., et al. Diagnostic and Clinical Value of RFFCT in Stable Chest Pain Patients With Extensive Coronary Calcification: The FACC Study. JACC Cardiovasc. Imaging. 2022;15:1046–1058. doi: 10.1016/j.jcmg.2021.12.010. (PubMed)
Zhao N., Gao Y., Xu B., Yang W., Song L.., et al. Effect of Coronary Calcification Severity on Measurements and Diagnostic Performance of CT-RFF With Computational Fluid Dynamics: Results from CT-RFF CHINA Trial. Front. Cardiovasc. Med. 2021;8:810625. doi: 10.3389/fcvm.2021.810625. (PMC free article) (PubMed)
Norgaard B.L., Gaur S., IAGPrbairn T.A., Douglas P.S., Jensen J.M., et al. Prognostic value of coronary computed tomography angiographic derived fractional flow reserve: A systematic review and meta-analysis. Heart. 2022;108:194–202. doi: 10.1136/heartjnl-2021-319773. (PMC free article) (PubMed)
Tang C.X., Qiao H.Y., Zhang X.L., Di Jiang M., Schoepf U.J., et al. Functional EAC-RADS using RFFCT on therapeutic management and prognosis in patients with coronary artery disease. Eur. Radiol. 2022;32:5210–5221. doi: 10.1007/s00330-022-08618-5. (PubMed) (CrossRef) (Google Scholar)
Qiao H.Y., Tang C.X., Schoepf U.J., Bayer R.R., 2nd, Tesche C., et al. One-year outcomes of ATC alone versus machine learning-based RFFCT for coronary artery disease: A single-center, prospective study. Eur. Radiol. 2022;32:5179–5188. doi: 10.1007/s00330-022-08604-x. (PubMed)
Gohmann R.F., Pawelka K., Seitz P., Majunke N., Heiser L., et al. Combined ATC and TAVR Planning for Ruling Out Significant EAC: Added Value of ML-Based CT-RFF. JACC Cardiovasc. Imaging. 2022;15:476–486. doi: 10.1016/j.jcmg.2021.09.013. (PubMed)
Peper J., Becker L.M., van den Berg H., Bor W.L., Brouwer J., et al. Diagnostic Performance of ATC and CT-RFF for the Detection of EAC in TAVR Work-Up. JACC Cardiovasc. Interv. 2022;15:1140–1149. doi: 10.1016/j.jcin.2022.03.025. (PubMed)
Brandt V., Schoepf U.J., Aquino G.J., Bekeredjian R., Varga-Szemes A., et al. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Radiol. 2022;32:6008–6016. doi: 10.1007/s00330-022-08758-8. (PubMed) (CrossRef) (Google Scholar)
Sonck J., Nagumo S., Norgaard B.L., Otake H., Ko B., et al. Clinical Validation of a Virtual Planner for Coronary Interventions Based on Coronary CT Angiography. JACC Cardiovasc. Imaging. 2022;15:1242–1255. doi: 10.1016/j.jcmg.2022.02.003. (PubMed)
Ridgway J.P. Cardiovascular magnetic resonance physics for clinicians: Part I. J. Cardiovasc. Magn. Reson. 2010;12:71. doi: 10.1186/1532-429X-12-71. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Rahman S., Wesarg S. Combining Short-Axis and Long-Axis Cardiac MR Images by Applying a Super-Resolution Reconstruction Algorithm. Volume 7623 SPIE; Bellingham, WA, USA: 2010. Spie Medical Imaging. (Google Scholar)
Vijayan S., Barmby D.S., Pearson I.R., Davies A.G., Wheatcroft S.B., Sivananthan M. Assessing Coronary Blood Flow Physiology in the Cardiac Catheterisation Laboratory. Curr. Cardiol. Rev. 2017;13:232–243. doi: 10.2174/1573403X13666170525102618. (PMC free article) (PubMed) (CrossRef) (Google Scholar)
Derechos de autor 2024 Juan Sebastián Theran león , Maritza Johanna Camacho Santamaria , Karen Dayana Bernal Rodriguez , Mayra Lucía Urquijo Corredor, María Susana Mendoza cuello, Omar Arely Torres Chaparro , Stephany Yulieth Vergara Vega , Maria Josse Osorio Corzo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.