Neuroplasticidad como Fundamento para la Recuperación Funcional en Pacientes Post-Ictus: Una Revisión de Estrategias Terapéuticas y Avances Recientes
Resumen
La neuroplasticidad es un proceso esencial en la recuperación post-ictus, permitiendo que el cerebro reorganice sus conexiones neuronales para restaurar funciones afectadas. Este artículo revisa la efectividad de diversas intervenciones en rehabilitación, destacando el ejercicio físico, la estimulación cognitiva y el uso de tecnologías avanzadas como la realidad virtual. La evidencia sugiere que estos métodos no solo mejoran la movilidad y habilidades cognitivas, sino que también potencian la independencia funcional y la calidad de vida del paciente. Los mejores resultados se observan en intervenciones tempranas y personalizadas, donde la plasticidad neuronal facilita la compensación de las áreas dañadas. En conclusión, un enfoque integral y basado en neuroplasticidad es clave para maximizar la recuperación post-ictus, ofreciendo nuevas perspectivas en la rehabilitación y el bienestar del paciente.
Descargas
Citas
Gulyaeva N V. Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry (Mosc). 2017 Mar;82(3):237–42.
de Oliveira RMW. Neuroplasticity. J Chem Neuroanat. 2020 Oct;108:101822.
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry. 2022 Jun;27(6):2689–99.
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018 Feb;19(2):63–80.
Johnson BP, Cohen LG. Applied strategies of neuroplasticity. Handb Clin Neurol. 2023;196:599–609.
Xing Y, Bai Y. A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol. 2020 Oct;57(10):4218–31.
Koch G, Spampinato D. Alzheimer disease and neuroplasticity. Handb Clin Neurol. 2022;184:473–9.
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson’s disease. J Neural Transm (Vienna). 2024 Nov;131(11):1329–39.
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol. 2022 Jul;66:100993.
Dąbrowski J, Czajka A, Zielińska-Turek J, Jaroszyński J, Furtak-Niczyporuk M, Mela A, et al. Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast. 2019;2019:9708905.
León Ruiz M, Rodríguez Sarasa ML, Sanjuán Rodríguez L, Benito-León J, García-Albea Ristol E, Arce Arce S. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease. Neurologia. 2018 Sep;33(7):459–72.
Monge-Pereira E, Molina-Rueda F, Rivas-Montero FM, Ibáñez J, Serrano JI, Alguacil-Diego IM, et al. Electroencephalography as a post-stroke assessment method: An updated review. Neurologia. 2017;32(1):40–9.
Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C, et al. Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS One. 2009 Dec 1;4(12):e8101.
Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol. 2021 Jan;335:113515.
Camandola S, Plick N, Mattson MP. Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochem Res. 2019 Jan;44(1):214–27.
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells. 2021 Aug 13;10(8).
Mitchell GS, Baker TL. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. Handb Clin Neurol. 2022;188:409–32.
Morishita H, Vinogradov S. Neuroplasticity and dysplasticity processes in schizophrenia. Schizophr Res. 2019 May;207:1–2.
Vandormael C, Schoenhals L, Hüppi PS, Filippa M, Borradori Tolsa C. Language in Preterm Born Children: Atypical Development and Effects of Early Interventions on Neuroplasticity. Neural Plast. 2019;2019:6873270.
Zwergal A, Lindner M, Grosch M, Dieterich M. In vivo neuroplasticity in vestibular animal models. Mol Cell Neurosci. 2022 May;120:103721.
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci. 2023 Apr 25;34(3):247–73.
de Sousa Fernandes MS, Ordônio TF, Santos GCJ, Santos LER, Calazans CT, Gomes DA, et al. Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plast. 2020;2020:8856621.
Hugues N, Pellegrino C, Rivera C, Berton E, Pin-Barre C, Laurin J. Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? Int J Mol Sci. 2021 Mar 16;22(6).
Derechos de autor 2025 Dennis Alexander Moreno Palacios, Luis Alfredo Herrera Paladines, Odaliz Erika Charco González, Damaris Vanessa Fernández Maldonado, Sheila Ximena Cruz Quezada, María José Banchón Torres, Joel Aldahir Cedeño Sánchez , Victor Euclides Briones Morales

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.