Anemia Hemolitica Autoinmune Inducida por Covid 19, Revision de los Mecanismos de un Complejo Fenomeno Inmuno Mediado

Palabras clave: COVID-19, sars-cov-2, anemia hemolítica autoinmune

Resumen

COVID-19 es una pandemia global provocada por el síndrome respiratorio agudo severo-coronavirus 2 (SARS-CoV-2). El punto de entrada del SARS-CoV-2 implica la interacción con el receptor de la enzima convertidora de angiotensina 2 (ACE2), CD147 y la proteína Band3 de los eritrocitos. La anemia hemolítica se ha relacionado con COVID-19 a través de la inducción de anemia hemolítica autoinmune (AHAI) causada por la formación de autoanticuerpos (auto-Abs) o directamente a través de CD147 o lesión de eritrocitos mediada por proteína Band3 de eritrocitos. Aquí, nuestro objetivo es proporcionar una visión integral de los posibles mecanismos que contribuyen a la anemia hemolítica durante la infección por SARS-CoV-2. En conjunto, los datos discutidos aquí destacan que la infección por SARS-CoV-2 puede provocar anemia hemolítica directamente a través de una lesión citopática o indirectamente a través de la inducción de auto-Abs. De este modo, Dado que la anemia hemolítica inducida por el SARS-CoV-2 se asocia cada vez más con la COVID-19, la detección y el tratamiento tempranos de esta afección pueden prevenir los malos resultados de pronóstico en los pacientes con COVID-19. Además, dado que pueden ocurrir exacerbaciones hemolíticas con los medicamentos para el tratamiento de COVID-19 y la vacunación contra el SARS-CoV-2, también se requiere un seguimiento continuo de las complicaciones. Dado eso, los nanosistemas inteligentes ofrecen herramientas para pruebas de amplio espectro y diagnóstico temprano de la infección.

Descargas

La descarga de datos todavía no está disponible.

Citas

Al-Kuraishy HM, Al-Gareeb AI. Comparison of deferasirox and deferoxamine effects on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia. Asian J Transfus Sci. 2017;11:13–17. doi: 10.4103/0973-6247.200768.

Berentsen S, Barcellini W. Autoimmune hemolytic anemias. N Engl J Med. 2021;385:1407–1419. doi: 10.1056/NEJMra2033982.

Hill QA, Hill A, Berentsen S. Defining autoimmune hemolytic anemia: a systematic review of the terminology used for diagnosis and treatment. Blood Adv. 2019;3:1897–1906. doi: 10.1182/bloodadvances.2019000036.

Chaudhary RK, Das SS. Autoimmune hemolytic anemia: from lab to bedside. Asian J Transfus Sci. 2014;8:5–12. doi: 10.4103/0973-6247.126681.

Liebman HA, Weitz IC. Autoimmune hemolytic anemia. Med Clin North Am. 2017;101:351–359. doi: 10.1016/j.mcna.2016.09.007.

Giannotta JA, Fattizzo B, Cavallaro F, Barcellini W. Infectious complications in autoimmune hemolytic anemia. J Clin Med. 2021;10(1):164. doi: 10.3390/jcm10010164.

Pathak S. Convalescent plasma: Would it prove to be magic potion/boon in the current scenario of COVID pandemic? Asian J Transfus Sci. 2020;14:1–3. doi: 10.4103/0973-6247.290652.

Al-kuraishy HM, A-M T, Al-Gareeb AI, Musa RA, Ali ZH. COVID-19 pneumonia in an Iraqi pregnant woman with preterm delivery. 0:1-1

Lugnier C, Al-Kuraishy HM, Rousseau E. PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem Pharmacol. 2021;185:114431 . doi: 10.1016/j.bcp.2021.114431.

Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol. 2002;69:258–271. doi: 10.1002/ajh.10062.

Abouyabis AN, Bell GT. Hemolytic anemia complicating COVID-19 infection. J Hematol. 2021;10:221–227. doi: 10.14740/jh906.

Maslov DV, Simenson V, Jain S, Badari A. COVID-19 and cold agglutinin hemolytic anemia. TH Open. 2020;4:e175–e177. doi: 10.1055/s-0040-1715791.

Russo A, Tellone E, Barreca D, Ficarra S, Laganà G. Implication of COVID-19 on erythrocytes functionality: red blood cell biochemical implications and morpho-functional aspects. Int J Mol Sci. 2022;23:2171. doi: 10.3390/ijms23042171.

Roy NBA, Telfer P, Eleftheriou P, de la Fuente J, Drasar E, Shah F, Roberts D, Atoyebi W, Trompeter S, Layton DM, et al. Protecting vulnerable patients with inherited anaemias from unnecessary death during the COVID-19 pandemic. Br J Haematol. 2020;189:635–639. doi: 10.1111/bjh.16687.

Severance TS, Rahim MQ, French J, Baker RM, Shriner A, Khaitan A, Overholt KM. COVID-19 and hereditary spherocytosis: a recipe for hemolysis. Pediatr Blood Cancer. 2021;68:e28548. doi: 10.1002/pbc.28548.

Fronza Michele, F B, Stirpe Emanuele. Acute lung failure due to COVID-19 in a patient with sickle cell anemia. Minerva Pneumologica 2020. 2021;59(2):44–6.

Algassim AA, Elghazaly AA, Alnahdi AS, Mohammed-Rahim OM, Alanazi AG, Aldhuwayhi NA, Alanazi MM, Almutairi MF, Aldeailej IM, Kamli NA, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100:37–43. doi: 10.1007/s00277-020-04256-3.

Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26:225–239. doi: 10.1080/16078454.2021.1881225.

Lazarian G, Quinquenel A, Bellal M, Siavellis J, Jacquy C, Re D, Merabet F, Mekinian A, Braun T, Damaj G, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190:29–31. doi: 10.1111/bjh.16794.

Vega Hernández P, Borges Rivas Y, Ortega Sánchez E, Marqués Cabrero A, Remedios Mateo L, Silvera Roig P, Infante Quintanar A, Díaz-Delgado Peñas R, Sánchez Escudero V, García-García ML. Autoimmune hemolytic anemia in a pediatric patient with severe acute respiratory syndrome coronavirus 2 infection. Pediatr Infect Dis J. 2020;39:e288. doi: 10.1097/INF.0000000000002809.

Zama D, Pancaldi L, Baccelli F, Guida F, Gottardi F, Dentale N, Esposito F, Masetti R, Viale P, Pession A. Autoimmune hemolytic anemia in children with COVID-19. Pediatric Blood & Cancer. 2022;69(2):e29330. doi: 10.1002/pbc.29330.

AbouYabis AN, Bell GT. Hemolytic anemia complicating COVID-19 infection. J Hematol. 2021;10:221–227. doi: 10.14740/jh906.

D’Alessandro A, Thomas T, Dzieciatkowska M, Hill RC, Francis RO, Hudson KE, Zimring JC, Hod EA, Spitalnik SL, Hansen KC. Serum proteomics in COVID-19 patients: altered coagulation and complement status as a function of IL-6 level. J Proteome Res. 2020;19:4417–4427. doi: 10.1021/acs.jproteome.0c00365.

Lam LKM, Reilly JP, Rux AH, Murphy SJ, Kuri-Cervantes L, Weisman AR, Ittner CAG, Pampena MB, Betts MR, Wherry EJ, et al. Erythrocytes identify complement activation in patients with COVID-19. American J Physiol-Lung Cell Molecular Physiol. 2021;321:L485–L489. doi: 10.1152/ajplung.00231.2021.

Damani J. Disseminated intravascular coagulopathy from warm autoimmune hemolytic anemia in a patient with COVID-19. Chest. 2020;158:A397. doi: 10.1016/j.chest.2020.08.388.

Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: the rollercoaster of fibrin(Ogen), D-dimer, Von Willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci. 2020;21(14):5168. doi: 10.3390/ijms21145168.

Solari D, Alberio L, Ribi C, Grandoni F, Stalder G. Autoimmune hemolytic anemia and pulmonary embolism: an association to consider. TH Open. 2021;05:e8–e13. doi: 10.1055/s-0040-1721733.

Patil NR, Herc ES, Girgis M (2020) Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 10.1016/j.hemonc.2020.06.005

Elmassry M, Vutthikraivit W, Abdelmalek J, Rahman MR, Makram J, Mortagy M, Test V. Warm autoimmune hemolytic anemia as a rare cause of pulmonary embolism. Chest. 2020;158:A2095–A2096. doi: 10.1016/j.chest.2020.08.1810.

Venter C, Bezuidenhout JA, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Erythrocyte, platelet, serum ferritin, and P-selectin pathophysiology implicated in severe hypercoagulation and vascular complications in COVID-19. Int J Mol Sci. 2020;21(21):8234. doi: 10.3390/ijms21218234.

Kang C, Kim DH, Kim T, Lee SH, Jeong JH, Lee SB, Kim JH, Jung MH, Lee KW, Park IS. Therapeutic effect of ascorbic acid on dapsone-induced methemoglobinemia in rats. Clin Exp Emerg Med. 2018;5:192–198. doi: 10.15441/ceem.17.253.

Palmer K, Dick J, French W, Floro L, Ford M. Methemoglobinemia in patient with G6PD deficiency and SARS-CoV-2 infection. Emerg Infect Dis. 2020;26(9):2279–2281. doi: 10.3201/eid2609.202353.

Lopes DV, Lazar Neto F, Marques LC, Lima RBO, Brandão AAGS. Methemoglobinemia and hemolytic anemia after COVID-19 infection without identifiable eliciting drug: a case-report. IDCases. 2021;23:e01013. doi: 10.1016/j.idcr.2020.e01013.

Liu Wenzhong Lh (2021) COVID-19: attacks the 1-beta chain of hemoglobin an captures the porphyrin to inhibit human heme metabolism. ChemRxiv. Cambridge: Cambridge Open Engage

DeMartino AW, Rose JJ, Amdahl MB, Dent MR, Shah FA, Bain W, McVerry BJ, Kitsios GD, Tejero J, Gladwin MT. No evidence of hemoglobin damage by SARS-CoV-2 infection. Haematologica. 2020;105:2769–2773. doi: 10.3324/haematol.2020.264267.

Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review Clin Pract. 2020;10:1271. doi: 10.4081/cp.2020.1271.

Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190:e92–e93. doi: 10.1111/bjh.16883.

Varadarajan S, Balaji TM, Sarode SC, Sarode GS, Sharma NK, Gondivkar S, Gadbail A, Patil S. EMMPRIN/BASIGIN as a biological modulator of oral cancer and COVID-19 interaction: Novel propositions. Med Hypotheses. 2020;143:110089 . doi: 10.1016/j.mehy.2020.110089.

Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5:283. doi: 10.1038/s41392-020-00426-x.

Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: get the ball rolling with a novel receptor and therapeutic target. Sci Total Environ. 2022;808:152072 . doi: 10.1016/j.scitotenv.2021.152072.

Bian H, Zheng ZH, Wei D, Zhang Z, Kang WZ, Hao CQ, Dong K, Kang W, Xia JL, Miao JL et al (2020) Meplazumab treats COVID-19 pneumonia: An open-labelled, concurrent controlled add-on clinical trial. medRxiv 2020.2003.2021.20040691. 10.1101/2020.03.21.20040691.

Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020;16:434–440. doi: 10.1007/s12015-020-09976-7.

Shilts J, Crozier TWM, Greenwood EJD, Lehner PJ, Wright GJ. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep. 2021;11:413. doi: 10.1038/s41598-020-80464-1.

Miao J, Zhang K, Zheng Z, Zhang R, Lv M, Guo N, Xu Y, Han Q, Chen Z, Zhu P. CD147 expressed on memory CD4. Front Immunol. 2020;11:545980. doi: 10.3389/fimmu.2020.545980.

Raony Í, Saggioro de Figueiredo C (2020) Retinal outcomes of COVID-19: possible role of CD147 and cytokine storm in infected patients with diabetes mellitus. Diabetes Res Clin Pract 165:108280. 10.1016/j.diabres.2020.108280.London

Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Miao H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33. doi: 10.1038/s41392-020-0148-4.

Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J Proteome Res. 2020;19:4455–4469. doi: 10.1021/acs.jproteome.0c00606.

Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. doi: 10.14814/phy2.14726.

Lancman G, Marcellino BK, Thibaud S, Troy K. Coombs-negative hemolytic anemia and elevated plasma hemoglobin levels in COVID-19. Ann Hematol. 2021;100:833–835. doi: 10.1007/s00277-020-04202-3.

Bhardwaj N, Singh A. Splenectomy modulates the erythrocyte turnover and Basigin (CD147) expression in mice. Indian J Hematol Blood Transfus. 2020;36:711–718. doi: 10.1007/s12288-020-01272-1.

Cosic I, Cosic D, Loncarevic I. RRM prediction of erythrocyte band3 protein as alternative receptor for SARS-CoV-2 virus. Appl Sci. 2020;10:4053. doi: 10.3390/app10114053.

Nemkov T, Reisz JA, Xia Y, Zimring JC, D'Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteomics. 2018;15:855–864. doi: 10.1080/14789450.2018.1531710.

Reisz JA, Wither MJ, Dzieciatkowska M, Nemkov T, Issaian A, Yoshida T, Dunham AJ, Hill RC, Hansen KC, D'Alessandro A. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood. 2016;128:e32–42. doi: 10.1182/blood-2016-05-714816.

Zhou Y, Ding N, Yang G, Peng W, Tang F, Guo C, Chai X. Serum lactate dehydrogenase level may predict acute respiratory distress syndrome of patients with fever infected by SARS-CoV-2. Ann Transl Med. 2020;8:1118. doi: 10.21037/atm-20-2411.

Del Vecchio L, Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin Kidney J. 2020;13:494–499. doi: 10.1093/ckj/sfaa149.

Aguiar JA, Tremblay BJ, Mansfield MJ, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A et al (2020) Gene expression and. Eur Respir J 56. 10.1183/13993003.01123-2020.

D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica. 2021;106:1290–1302. doi: 10.3324/haematol.2020.246603.

Marfia G, Navone S, Guarnaccia L, Campanella R, Mondoni M, Locatelli M, Barassi A, Fontana L, Palumbo F, Garzia E, et al. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol Med. 2021;13:e13424. doi: 10.15252/emmm.202013424.

Selim S, Sunkara M, Salous AK, Leung SW, Berdyshev EV, Bailey A, Campbell CL, Charnigo R, Morris AJ, Smyth SS. Plasma levels of sphingosine 1-phosphate are strongly correlated with haematocrit, but variably restored by red blood cell transfusions. Clin Sci (Lond) 2011;121:565–572. doi: 10.1042/CS20110236.

Alam S, Kamal TB, Sarker MMR, Zhou JR, Rahman SMA, Mohamed IN. Therapeutic effectiveness and safety of repurposing drugs for the treatment of COVID-19: position standing in 2021. Front Pharmacol. 2021;12:659577. doi: 10.3389/fphar.2021.659577.

Ha F, John A, Zumwalt M. The Southwest Respiratory and Critical Care Chronicles. 10.12746/swrccc.v9i37.795

Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin Toxicol (Phila) 2021;59:12–23. doi: 10.1080/15563650.2020.1817479.

Mohammad S, Clowse MEB, Eudy AM, Criscione-Schreiber LG. Examination of hydroxychloroquine use and hemolytic anemia in G6PDH-deficient patients. Arthritis Care Res (Hoboken) 2018;70:481–485. doi: 10.1002/acr.23296.

Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID-19. J Med Virol. 2020;92:740–746. doi: 10.1002/jmv.25798.

Eslami G, Mousaviasl S, Radmanesh E, Jelvay S, Bitaraf S, Simmons B, Wentzel H, Hill A, Sadeghi A, Freeman J, et al. The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. J Antimicrob Chemother. 2020;75:3366–3372. doi: 10.1093/jac/dkaa331.

Sato S, Moriya K, Furukawa M, Saikawa S, Namisaki T, Kitade M, Kawaratani H, Kaji K, Takaya H, Shimozato N, et al. Efficacy of L-carnitine on ribavirin-induced hemolytic anemia in patients with hepatitis C virus infection. Clin Mol Hepatol. 2019;25:65–73. doi: 10.3350/cmh.2018.0070.

Nabil A, Uto K, Elshemy MM, Soliman R, Hassan AA, Ebara M, Shiha G. Current coronavirus (SARS-CoV-2) epidemiological, diagnostic and therapeutic approaches: an updated review until June 2020. EXCLI J. 2020;19:992–1016. doi: 10.17179/excli2020-2554.

Tao Z, Xu J, Chen W, Yang Z, Xu X, Liu L, Chen R, Xie J, Liu M, Wu J, et al. Anemia is associated with severe illness in COVID-19: a retrospective cohort study. J Med Virol. 2021;93:1478–1488. doi: 10.1002/jmv.26444.

Fattizzo B, Pasquale R, Bellani V, Barcellini W, Kulasekararaj AG. Complement mediated hemolytic anemias in the COVID-19 era: case series and review of the literature. Front Immunol. 2021;12:791429. doi: 10.3389/fimmu.2021.791429.

Fatima Z, Reece BRA, Moore JS, Means RT. Autoimmune hemolytic anemia after mRNA COVID vaccine. J Investig Med High Impact Case Rep. 2022;10:232470962110732. doi: 10.1177/23247096211073258.

Lopez C, Kim J, Pandey A, Huang T, Deloughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190:31–32. doi: 10.1111/bjh.16786.

Nair LJ, Regukumar A, Baalamurugan KT. COVID-19-associated severe autoimmune hemolytic anemia: a rare case report. Saudi J Med Med Sci. 2021;9:276–279. doi: 10.4103/sjmms.sjmms_203_21.

Brazel D, Eid T, Harding C. Warm and cold autoimmune hemolytic anemia in the setting of COVID-19 disease. Cureus. 2021;13:e18127. doi: 10.7759/cureus.18127.

Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic anemia in COVID-19 infection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12:e2020053. doi: 10.4084/MJHID.2020.053.

Campos-Cabrera G, Mendez-Garcia E, Mora-Torres M, Campos-Cabrera S, Campos-Cabrera V, Garcia-Rubio G, Jose-Luis CV (2020) Autoimmune hemolytic anemia as initial presentation of COVID-19 infection. Blood 136:8. 10.1182/blood-2020-139001.

Huda Z, Jahangir A, Sahra S, Rafay Khan Niazi M, Anwar S, Glaser A (2021) A Case of COVID-19-associated autoimmune hemolytic anemia with hyperferritinemia in an immunocompetent host. Cureus 13(6):e16078. 10.7759/cureus.16078.

Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi SA. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens Bioelectron. 2021;177:112971. doi: 10.1016/j.bios.2021.112971.

Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim NY, Goswami DY. Electrochemical SARS-CoV-2 sensing at point-of-care and artificial intelligence for intelligent COVID-19 management. ACS Appl Bio Mater. 2020;3:7306–7325. doi: 10.1021/acsabm.0c01004.

Mostafavi E, Dubey AK, Teodori L, Ramakrishna S, Kaushik A (2020) SARS‐CoV‐2 Omicron variant: A next phase of the COVID‐19 pandemic and a call to arms for system sciences and precision medicine. MedComm 3. 10.1002/mco2.119.

Tiwari S, Juneja S, Ghosal A, Bandara N, Khan R, Wallen SL, Ramakrishna S, Kaushik A. Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern. Curr Opin Biomed Eng. 2022;21:100363. doi: 10.1016/j.cobme.2021.100363.

Publicado
2025-04-22
Cómo citar
Vasquez, D., Rey Vega , W. K., González Martínez, J. A., González Martínez , J. D., Saltaren Cerchiaro, C. J., Rodríguez Jacome, M. G., Suaza Mendoza, L. D., Cruz Acosta , M. F., & Peña Gualteros , L. (2025). Anemia Hemolitica Autoinmune Inducida por Covid 19, Revision de los Mecanismos de un Complejo Fenomeno Inmuno Mediado. Ciencia Latina Revista Científica Multidisciplinar, 9(2), 3809-3830. https://doi.org/10.37811/cl_rcm.v9i2.17179
Sección
Ciencias de la Salud

Artículos más leídos del mismo autor/a